Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
JAMA ; 329(14): 1170-1182, 2023 04 11.
Article in English | MEDLINE | ID: covidwho-2303367

ABSTRACT

Importance: Preclinical models suggest dysregulation of the renin-angiotensin system (RAS) caused by SARS-CoV-2 infection may increase the relative activity of angiotensin II compared with angiotensin (1-7) and may be an important contributor to COVID-19 pathophysiology. Objective: To evaluate the efficacy and safety of RAS modulation using 2 investigational RAS agents, TXA-127 (synthetic angiotensin [1-7]) and TRV-027 (an angiotensin II type 1 receptor-biased ligand), that are hypothesized to potentiate the action of angiotensin (1-7) and mitigate the action of the angiotensin II. Design, Setting, and Participants: Two randomized clinical trials including adults hospitalized with acute COVID-19 and new-onset hypoxemia were conducted at 35 sites in the US between July 22, 2021, and April 20, 2022; last follow-up visit: July 26, 2022. Interventions: A 0.5-mg/kg intravenous infusion of TXA-127 once daily for 5 days or placebo. A 12-mg/h continuous intravenous infusion of TRV-027 for 5 days or placebo. Main Outcomes and Measures: The primary outcome was oxygen-free days, an ordinal outcome that classifies a patient's status at day 28 based on mortality and duration of supplemental oxygen use; an adjusted odds ratio (OR) greater than 1.0 indicated superiority of the RAS agent vs placebo. A key secondary outcome was 28-day all-cause mortality. Safety outcomes included allergic reaction, new kidney replacement therapy, and hypotension. Results: Both trials met prespecified early stopping criteria for a low probability of efficacy. Of 343 patients in the TXA-127 trial (226 [65.9%] aged 31-64 years, 200 [58.3%] men, 225 [65.6%] White, and 274 [79.9%] not Hispanic), 170 received TXA-127 and 173 received placebo. Of 290 patients in the TRV-027 trial (199 [68.6%] aged 31-64 years, 168 [57.9%] men, 195 [67.2%] White, and 225 [77.6%] not Hispanic), 145 received TRV-027 and 145 received placebo. Compared with placebo, both TXA-127 (unadjusted mean difference, -2.3 [95% CrI, -4.8 to 0.2]; adjusted OR, 0.88 [95% CrI, 0.59 to 1.30]) and TRV-027 (unadjusted mean difference, -2.4 [95% CrI, -5.1 to 0.3]; adjusted OR, 0.74 [95% CrI, 0.48 to 1.13]) resulted in no difference in oxygen-free days. In the TXA-127 trial, 28-day all-cause mortality occurred in 22 of 163 patients (13.5%) in the TXA-127 group vs 22 of 166 patients (13.3%) in the placebo group (adjusted OR, 0.83 [95% CrI, 0.41 to 1.66]). In the TRV-027 trial, 28-day all-cause mortality occurred in 29 of 141 patients (20.6%) in the TRV-027 group vs 18 of 140 patients (12.9%) in the placebo group (adjusted OR, 1.52 [95% CrI, 0.75 to 3.08]). The frequency of the safety outcomes was similar with either TXA-127 or TRV-027 vs placebo. Conclusions and Relevance: In adults with severe COVID-19, RAS modulation (TXA-127 or TRV-027) did not improve oxygen-free days vs placebo. These results do not support the hypotheses that pharmacological interventions that selectively block the angiotensin II type 1 receptor or increase angiotensin (1-7) improve outcomes for patients with severe COVID-19. Trial Registration: ClinicalTrials.gov Identifier: NCT04924660.


Subject(s)
COVID-19 , Receptor, Angiotensin, Type 1 , Renin-Angiotensin System , Vasodilator Agents , Adult , Female , Humans , Male , Middle Aged , Angiotensin II/metabolism , Angiotensins/administration & dosage , Angiotensins/therapeutic use , COVID-19/complications , COVID-19/mortality , COVID-19/physiopathology , COVID-19/therapy , Hypoxia/drug therapy , Hypoxia/etiology , Hypoxia/mortality , Infusions, Intravenous , Ligands , Oligopeptides/administration & dosage , Oligopeptides/therapeutic use , Randomized Controlled Trials as Topic , Receptor, Angiotensin, Type 1/administration & dosage , Receptor, Angiotensin, Type 1/therapeutic use , Renin-Angiotensin System/drug effects , SARS-CoV-2 , Vasodilator Agents/administration & dosage , Vasodilator Agents/therapeutic use
2.
J Hypertens ; 41(6): 951-957, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-2258584

ABSTRACT

AIM: The pulse wave response to salbutamol (PWRS) - change in augmentation index (AIx) - provides a means to assess endothelial vasodilator function in vivo . Endothelial dysfunction plays a relevant role in the pathogenesis of hypertension and cardiovascular disease and appears to underlie many of the complications of coronavirus disease 2019 (COVID-19). However, to what degree this persists after recovery is unknown. METHODS: Individuals previously hospitalized with COVID-19, those recovered from mild symptoms and seronegative controls with well known risk factors for endothelial dysfunction were studied. To assess the involvement of nitric oxide-cyclic guanosine monophosphate pathway (NO-cGMP) on PWRS, sildenafil was also administrated in a subsample. RESULTS: One hundred and one participants (60 men) aged 47.8 ±â€Š14.1 (mean ±â€ŠSD) years of whom 33 were previously hospitalized with COVID-19 were recruited. Salbutamol had minimal effect on haemodynamics including blood pressure and heart rate. It reduced AIx in controls ( n  = 34) and those recovered from mild symptoms of COVID-19 ( n  = 34) but produced an increase in AIx in those previously hospitalized: mean change [95% confidence interval] -2.85 [-5.52, -0.188] %, -2.32 [-5.17,0.54] %, and 3.03 [0.06, 6.00] % for controls, those recovered from mild symptoms and those previously hospitalized, respectively ( P  = 0.001). In a sub-sample ( n  = 22), sildenafil enhanced PWRS (change in AIx 0.05 [-2.15,2.24] vs. -3.96 [-7.01. -2.18], P  = 0.006) with no significant difference between hospitalized ( n  = 12) and nonhospitalized participants ( n  = 10). CONCLUSIONS: In patients previously hospitalized with COVID-19, there is long-lasting impairment of endothelial function as measured by the salbutamol-induced stimulation of the NO-cGMP pathway that may contribute to cardiovascular complications.


Subject(s)
COVID-19 , Hypertension , Male , Humans , Vasodilation , Sildenafil Citrate/pharmacology , Sildenafil Citrate/therapeutic use , Adrenergic Agents/pharmacology , Endothelium, Vascular , COVID-19/complications , Vasodilator Agents/pharmacology , Albuterol/pharmacology , Albuterol/therapeutic use
3.
Am J Physiol Heart Circ Physiol ; 324(6): H713-H720, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-2273649

ABSTRACT

Many individuals who had coronavirus disease 2019 (COVID-19) develop detrimental persistent symptoms, a condition known as postacute sequelae of COVID-19 (PASC). Despite the elevated risk of cardiovascular disease following COVID-19, limited studies have examined vascular function in PASC with equivocal results reported. Moreover, the role of PASC symptom burden on vascular health has not been examined. We tested the hypothesis that peripheral and cerebral vascular function would be blunted and central arterial stiffness would be elevated in patients with PASC compared with age-matched controls. Furthermore, we hypothesized that impairments in vascular health would be greater in those with higher PASC symptom burden. Resting blood pressure (BP; brachial and central), brachial artery flow-mediated dilation (FMD), forearm reactive hyperemia, carotid-femoral pulse wave velocity (PWV), and cerebral vasodilator function were measured in 12 females with PASC and 11 age-matched female controls without PASC. The severity of persistent symptoms in those with PASC was reported on a scale of 1-10 (higher score: greater severity). Brachial BP (e.g., systolic BP, 126 ± 19 vs.109 ± 8 mmHg; P = 0.010), central BP (P < 0.050), and PWV (7.1 ± 1.2 vs. 6.0 ± 0.8 m/s; P = 0.015) were higher in PASC group compared with controls. However, FMD, reactive hyperemia, and cerebral vasodilator function were not different between groups (P > 0.050 for all). Total symptom burden was not correlated with any measure of cardiovascular health (P > 0.050 for all). Collectively, these findings indicate that BP and central arterial stiffness are elevated in females with PASC, whereas peripheral and cerebral vascular function appear to be unaffected, effects that appear independent of symptom burden.NEW & NOTEWORTHY We demonstrate for the first time that resting blood pressure (BP) and central arterial stiffness are higher in females with PASC compared with controls. In contrast, peripheral and cerebral vascular functions appear unaffected. Moreover, there was no relationship between total PASC symptom burden and measures of BP, arterial stiffness, or vascular function. Collectively, these findings suggest that females with PASC could be at greater risk of developing hypertension, which appears independent of symptom burden.


Subject(s)
COVID-19 , Hyperemia , Vascular Stiffness , Humans , Female , Pulse Wave Analysis , COVID-19/complications , Blood Pressure , Vasodilator Agents/pharmacology , Brachial Artery
4.
Microvasc Res ; 145: 104454, 2023 01.
Article in English | MEDLINE | ID: covidwho-2095842

ABSTRACT

OBJECTIVE: Subclinical life style disease can cause endothelial dysfunction associated with perfusion abnormalities and reduced vascular compliance. Subclinical elevated beta type natriuretic peptide (BNP) has been associated with altered fluid shift from extra to intracellular space during acute hypoxia. Therefore we measured vascular response and BNP levels during acute hypoxia to study endothelial functions among healthy individuals. METHODS: Individuals were exposed to acute normobaric hypoxia of FiO2 = 0.15 for one hour in supine position and their pulmonary and systemic vascular response to hypoxia was compared. Individuals were divided into two groups based on either no response (Group 1) or rise in systolic pulmonary artery pressure to hypoxia (Group 2) and their BNP levels were compared. RESULTS: BNP was raised after hypoxia exposure in group 2 only from 18.52 ± 7 to 21.56 ± 10.82 picogram/ml, p < 0.05. Group 2 also showed an increase in mean arterial pressure and no fall in total body water in response to acute hypoxia indicating decreased endothelial function compared to Group 1. CONCLUSION: Rise in pulmonary artery pressure and BNP level in response to acute normobaric hypoxia indicates reduced endothelial function and can be used to screen subclinical lifestyle disease among healthy population.


Subject(s)
Hypoxia , Natriuretic Peptide, Brain , Humans , Hypoxia/diagnosis , Lung/blood supply , Vasodilator Agents , Life Style , Pulmonary Artery
5.
Int J Environ Res Public Health ; 19(19)2022 Oct 06.
Article in English | MEDLINE | ID: covidwho-2066063

ABSTRACT

BACKGROUND: Severe COVID-19 is associated with hypoxemia and acute respiratory distress syndrome (ARDS), which may predispose multiorgan failure and death. Inhaled nitric oxide (iNO) is a clinical vasodilator used in the management of acute respiratory distress syndrome (ARDS). This study evaluated the response rate to iNO in patients with COVID-19-ARDS. METHOD: We searched Medline and Embase databases in May 2022, and data on the use of iNO in the treatment of ARDS in COVID-19 patients were synthesized from studies that satisfied predefined inclusion criteria. A systematic synthesis of data was performed followed by meta-analysis. We performed the funnel plot and leave-one-out sensitivity test on the included studies to assess publication bias and possible exaggerated effect size. We compared the effect size of the studies from the Unites States with those from other countries and performed meta-regression to assess the effect of age, year of publication, and concomitant vasodilator use on the effect size. RESULTS: A total of 17 studies (including 712 COVID-19 patients) were included in this systematic review of which 8 studies (involving 265 COVID-19 patients) were subjected to meta-analysis. The overall response rate was 66% (95% CI, 47-84%) with significantly high between-studies heterogeneity (I2 = 94%, p < 0.001). The funnel plot showed publication bias, although the sensitivity test using leave-one-out analysis showed that removing any of the study does not remove the significance of the result. The response rate was higher in the Unites States, and meta-regression showed that age, year of publication, and use of concomitant vasodilators did not influence the response rate to iNO. CONCLUSION: iNO therapy is valuable in the treatment of hypoxemia in COVID-19 patients and may improve systemic oxygenation in patients with COVID-19-ARDS. Future studies should investigate the mechanism of the activity of iNO in COVID-19 patients to provide insight into the unexplored potential of iNO in general ARDS.


Subject(s)
COVID-19 Drug Treatment , Respiratory Distress Syndrome , Administration, Inhalation , Humans , Hypoxia/drug therapy , Nitric Oxide/therapeutic use , Respiratory Distress Syndrome/drug therapy , Vasodilator Agents/adverse effects , Vasodilator Agents/therapeutic use
6.
J Intensive Care Med ; 37(10): 1370-1382, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1968486

ABSTRACT

Introduction: Inhaled pulmonary vasodilators (IPVD) have been previously studied in patients with non-coronavirus disease-19 (COVID-19) related acute respiratory distress syndrome (ARDS). The use of IPVD has been shown to improve the partial pressure of oxygen in arterial blood (PaO2), reduce fraction of inspired oxygen (FiO2) requirements, and ultimately increase PaO2/FiO2 (P/F) ratios in ARDS patients. However, the role of IPVD in COVID-19 ARDS is still unclear. Therefore, we performed this meta-analysis to evaluate the role of IPVD in COVID-19 patients. Methods: Comprehensive literature search of PubMed, Embase, Web of Science and Cochrane Library databases from inception through April 22, 2022 was performed for all published studies that utilized IPVD in COVID-19 ARDS patients. The single arm studies and case series were combined for a 1-arm meta-analysis, and the 2-arm studies were combined for a 2-arm meta-analysis. Primary outcomes for the 1-arm and 2-arm meta-analyzes were change in pre- and post-IPVD P/F ratios and mortality, respectively. Secondary outcomes for the 1-arm meta-analysis were change in pre- and post-IPVD positive end-expiratory pressure (PEEP) and lung compliance, and for the 2-arm meta-analysis the secondary outcomes were need for endotracheal intubation and hospital length of stay (LOS). Results: 13 single arm retrospective studies and 5 case series involving 613 patients were included in the 1-arm meta-analysis. 3 studies involving 640 patients were included in the 2-arm meta-analysis. The pre-IPVD P/F ratios were significantly lower compared to post-IPVD, but there was no significant difference between pre- and post-IPVD PEEP and lung compliance. The mortality rates, need for endotracheal intubation, and hospital LOS were similar between the IPVD and standard therapy groups. Conclusion: Although IPVD may improve oxygenation, our investigation showed no benefits in terms of mortality compared to standard therapy alone. However, randomized controlled trials are warranted to validate our findings.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Oxygen , Respiratory Distress Syndrome/drug therapy , Retrospective Studies , Vasodilator Agents/therapeutic use
7.
Peptides ; 157: 170848, 2022 11.
Article in English | MEDLINE | ID: covidwho-1967000

ABSTRACT

Angiotensin (Ang) II, the main active member of the renin angiotensin system (RAS), is essential for the maintenance of cardiovascular homeostasis. However, hyperactivation of the RAS causes fibrotic diseases. Ang II has pro-inflammatory actions, and moreover activates interstitial fibroblasts and/or dysregulates extracellular matrix degradation. The discovery of new RAS pathways has revealed the complexity of this system. Among the RAS peptides, alamandine (ALA, Ala1 Ang 1-7) has been identified in humans, rats, and mice, with protective actions in different pathological conditions. ALA has similar effects to its well-known congener, Ang-(1-7), as a vasodilator, anti-inflammatory, and antifibrotic. Its protective role against cardiovascular diseases is well-reviewed in the literature. However, the protective actions of ALA in fibrotic conditions have been little explored. Therefore, in this article, we review the ability of ALA to modulate the inflammatory process and collagen deposition, to serve as an antioxidant, and to mediate protection against functional disorders. In this scenario, we also explore ALA as a promising therapy for pulmonary fibrosis after COVID-19 infection.


Subject(s)
COVID-19 Drug Treatment , Peptidyl-Dipeptidase A , Angiotensin II/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Collagen/metabolism , Fibrosis , Humans , Mice , Oligopeptides , Peptidyl-Dipeptidase A/metabolism , Rats , Receptors, G-Protein-Coupled/metabolism , Renin-Angiotensin System , Vasodilator Agents/pharmacology
8.
Mol Biol Rep ; 49(10): 9915-9927, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1942412

ABSTRACT

Bradykinin, a member of the kallikrein-kinin system (KKS), is a potent, short-lived vasoactive peptide that acts as a vasodilator and an inflammatory mediator in a number of signaling mechanisms. Bradykinin induced signaling is mediated through kinin B1 (BDKRB1) and B2 (BDKRB2) transmembrane receptors coupled with different subunits of G proteins (Gαi/Gα0, Gαq and Gß1γ2). The bradykinin-mediated signaling mechanism activates excessive pro-inflammatory cytokines, including IL-6, IL-1ß, IL-8 and IL-2. Upregulation of these cytokines has implications in a wide range of clinical conditions such as inflammation leading to fibrosis, cardiovascular diseases, and most recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In SARS-CoV-2 infection, bradykinin is found to be at raised levels and is reported to trigger a diverse array of symptoms. All of this brings bradykinin to the core point as a molecule of immense therapeutic value. Our understanding of its involvement in various pathways has expanded with time. Therefore, there is a need to look at the overall picture that emerges from the developments made by deciphering the bradykinin mediated signaling mechanisms involved in the pathological conditions. It will help devise strategies for developing better treatment modalities in the implicated diseases. This review summarizes the current state of knowledge on bradykinin mediated signaling in the diverse conditions described above, with a marked emphasis on the therapeutic potential of targeting the bradykinin receptor.


Subject(s)
Bradykinin , COVID-19 , Humans , Interleukin-2 , Interleukin-6 , Interleukin-8 , Receptors, Bradykinin/physiology , SARS-CoV-2 , Vasodilator Agents
9.
PLoS One ; 17(6): e0270646, 2022.
Article in English | MEDLINE | ID: covidwho-1910691

ABSTRACT

OBJECTIVE: To compare the efficacy and outcomes with inhaled nitric oxide (iNO) and inhaled epoprostenol (iEPO) in patients with refractory hypoxemia due to COVID-19. DESIGN: Retrospective Cohort Study. SETTING: Single health system multicenter academic teaching hospitals. PATIENTS OR SUBJECTS: Age group of 18-80 years admitted to the medical ICU. INTERVENTIONS: Mechanically ventilated patients with COVID-19 infection, who received either iNO or iEPO between March 1st, 2020, and June 30th, 2020. MEASUREMENTS AND MAIN RESULTS: The primary outcome was the change in the PaO2/FiO2 (P/F) ratio 1 hour after initiation of pulmonary vasodilator therapy. Secondary outcomes include P/F ratios on days 1-3 after initiation, positive response in P/F ratio (increase of at least 20% in PaO2), total days of treatment, rebound hypoxemia (if there was a drop in oxygen saturation after treatment was stopped), ventilator free days (if any patient was extubated), days in ICU, days to extubation, days to tracheostomy, mortality days after intubation, 30-day survival and mortality. 183 patients were excluded, as they received both iNO and iEPO. Of the remaining 103 patients, 62 received iEPO and 41 received iNO. The severity of ARDS was similar in both groups. Change in P/F ratio at one hour was 116 (70.3) with iNO and 107 (57.6) with iEPO (Mean/SD). Twenty-two (53.7%) patients in the iNO group and 25 (40.3%) in the iEPO group were responders to pulmonary vasodilators n(%)(p = 0.152) (more than 20% increase in partial pressure of oxygen, Pao2), and 18 (43.9%) and 31 (50%) patients in the iNO and iEPO group (p = 0.685), respectively, had rebound hypoxemia. Only 7 patients in the cohort achieved ventilator free days (3 in the iEPO group and 4 in iNO group). CONCLUSIONS: We found no significant difference between iNO and iEPO in terms of change in P/F ratio, duration of mechanical ventilation, ICU, in-hospital mortality in this cohort of mechanically ventilated patients with COVID-19. Larger, prospective studies are necessary to validate these results.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Epoprostenol , Administration, Inhalation , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/complications , Epoprostenol/therapeutic use , Humans , Hypoxia/drug therapy , Middle Aged , Nitric Oxide/therapeutic use , Oxygen/therapeutic use , Prospective Studies , Retrospective Studies , Vasodilator Agents/therapeutic use , Young Adult
11.
J Intensive Care Med ; 37(8): 1101-1111, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1775171

ABSTRACT

BACKGROUND: There have been over 200 million cases and 4.4 million deaths from COVID-19 worldwide. Despite the lack of robust evidence one potential treatment for COVID-19 associated severe hypoxaemia is inhaled pulmonary vasodilator (IPVD) therapy, using either nitric oxide (iNO) or prostaglandins. We describe the implementation of, and outcomes from, a protocol using IPVDs in a cohort of patients with severe COVID-19 associated respiratory failure receiving maximal conventional support. METHODS: Prospectively collected data from adult patients with SARS-CoV-2 admitted to the intensive care unit (ICU) at a large teaching hospital were analysed for the period 14th March 2020 - 11th February 2021. An IPVD was considered if the PaO2/FiO2 (PF) ratio was less than 13.3kPa despite maximal conventional therapy. Nitric oxide was commenced at 20ppm and titrated to response. If oxygenation improved Iloprost nebulisers were commenced and iNO weaned. The primary outcome was percentage changes in PF ratio and Alveolar-arterial (A-a) gradient. RESULTS: Fifty-nine patients received IPVD therapy during the study period. The median PF ratio before IPVD therapy was commenced was 11.33kPa (9.93-12.91). Patients receiving an IPVD had a lower PF ratio (14.37 vs. 16.37kPa, p = 0.002) and higher APACHE-II score (17 vs. 13, p = 0.028) at ICU admission. At 72 hours after initiating an IPVD the median improvement in PF ratio was 33.9% (-4.3-84.1). At 72 hours changes in PF ratio (70.8 vs. -4.1%, p < 0.001) and reduction in A-a gradient (44.7 vs. 14.8%, p < 0.001) differed significantly between survivors (n = 33) and non-survivors (n = 26). CONCLUSIONS: The response to IPVDs in patients with COVID-19 associated acute hypoxic respiratory failure differed significantly between survivors and non-survivors. Both iNO and prostaglandins may offer therapeutic options for patients with severe refractory hypoxaemia due to COVID-19. The use of inhaled prostaglandins, and iNO where feasible, should be studied in adequately powered prospective randomised trials.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Respiratory Distress Syndrome , Respiratory Insufficiency , Administration, Inhalation , Adult , COVID-19/complications , Compassionate Use Trials , Humans , Hypoxia/drug therapy , Hypoxia/etiology , Nitric Oxide/therapeutic use , Prospective Studies , Prostaglandins/therapeutic use , Respiratory Insufficiency/drug therapy , Respiratory Insufficiency/etiology , SARS-CoV-2 , Vasodilator Agents/therapeutic use
12.
J Crit Care ; 69: 153990, 2022 06.
Article in English | MEDLINE | ID: covidwho-1683274

ABSTRACT

PURPOSE: Measure the effect of inhaled pulmonary vasodilators on gas exchange in mechanically ventilated patients with COVID-19. METHODS: A retrospective observational cohort study at three New York University Hospitals was performed including eighty-four mechanically ventilated SARS Cov-2 nasopharyngeal PCR positive patients, sixty nine treated with inhaled nitric oxide (iNO) and fifteen with inhaled epoprostenol (iEPO). The primary outcomes were change in PAO2:FIO2 ratio, oxygenation Index (OI), and ventilatory ratio (VR) after initiation of inhaled pulmonary vasodilators. RESULTS: There was no significant change in PAO2:FIO2ratio after initiation of iNO (mean - 4.1, 95% CI -17.3-9.0, P = 0.54) or iEPO (mean - 3.4, 95% CI -19.7-12.9, P = 0.66), in OI after initiation of iNO (mean 2.1, 95% CI-0.04-4.2, P = 0.054) or iEPO (mean - 3.4, 95% CI -19.7-12.9, P = 0.75), or in VR after initiation of iNO (mean 0.17, 95% CI -0.03-0.36, P = 0.25) or iEPO (mean 0.33, 95% CI -0.0847-0.74, P = 0.11). PAO2:FIO2, OI and VR did not significantly change over a five day period starting the day prior to drug initiation in patients who received either iNO or iEPO assessed with a fixed effects model. CONCLUSION: Inhaled pulmonary vasodilators were not associated with significant improvement in gas exchange in mechanically ventilated patients with COVID-19.


Subject(s)
COVID-19 Drug Treatment , Vasodilator Agents , Administration, Inhalation , Epoprostenol , Humans , Nitric Oxide , Pulmonary Gas Exchange , Respiration, Artificial , Retrospective Studies , Vasodilator Agents/therapeutic use
13.
Nitric Oxide ; 121: 20-33, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1665319

ABSTRACT

Inhaled nitric oxide (iNO) acts as a selective pulmonary vasodilator and it is currently approved by the FDA for the treatment of persistent pulmonary hypertension of the newborn. iNO has been demonstrated to effectively decrease pulmonary artery pressure and improve oxygenation, while decreasing extracorporeal life support use in hypoxic newborns affected by persistent pulmonary hypertension. Also, iNO seems a safe treatment with limited side effects. Despite the promising beneficial effects of NO in the preclinical literature, there is still a lack of high quality evidence for the use of iNO in clinical settings. A variety of clinical applications have been suggested in and out of the critical care environment, aiming to use iNO in respiratory failure and pulmonary hypertension of adults or as a preventative measure of hemolysis-induced vasoconstriction, ischemia/reperfusion injury and as a potential treatment of renal failure associated with cardiopulmonary bypass. In this narrative review we aim to present a comprehensive summary of the potential use of iNO in several clinical conditions with its suggested benefits, including its recent application in the scenario of the COVID-19 pandemic. Randomized controlled trials, meta-analyses, guidelines, observational studies and case-series were reported and the main findings summarized. Furthermore, we will describe the toxicity profile of NO and discuss an innovative proposed strategy to produce iNO. Overall, iNO exhibits a wide range of potential clinical benefits, that certainly warrants further efforts with randomized clinical trials to determine specific therapeutic roles of iNO.


Subject(s)
Critical Illness , Hypertension, Pulmonary/drug therapy , Infant, Newborn, Diseases/drug therapy , Nitric Oxide/therapeutic use , Vasodilator Agents/therapeutic use , Adult , COVID-19/complications , COVID-19/virology , Humans , Hypertension, Pulmonary/etiology , Infant, Newborn , Infant, Newborn, Diseases/etiology , Nitric Oxide/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , Vasodilator Agents/pharmacology , COVID-19 Drug Treatment
15.
PLoS One ; 17(1): e0262737, 2022.
Article in English | MEDLINE | ID: covidwho-1631070

ABSTRACT

INTRODUCTION: The coronavirus disease 2019 (COVID-19), emerged in late 2019, was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The risk factors for idiopathic pulmonary fibrosis (IPF) and COVID-19 are reported to be common. This study aimed to determine the potential role of differentially expressed genes (DEGs) common in IPF and COVID-19. MATERIALS AND METHODS: Based on GEO database, we obtained DEGs from one SARS-CoV-2 dataset and five IPF datasets. A series of enrichment analysis were performed to identify the function of upregulated and downregulated DEGs, respectively. Two plugins in Cytoscape, Cytohubba and MCODE, were utilized to identify hub genes after a protein-protein interaction (PPI) network. Finally, candidate drugs were predicted to target the upregulated DEGs. RESULTS: A total of 188 DEGs were found between COVID-19 and IPF, out of which 117 were upregulated and 71 were downregulated. The upregulated DEGs were involved in cytokine function, while downregulated DEGs were associated with extracellular matrix disassembly. Twenty-two hub genes were upregulated in COVID-19 and IPF, for which 155 candidate drugs were predicted (adj.P.value < 0.01). CONCLUSION: Identifying the hub genes aberrantly regulated in both COVID-19 and IPF may enable development of molecules, encoded by those genes, as therapeutic targets for preventing IPF progression and SARS-CoV-2 infections.


Subject(s)
COVID-19/genetics , Idiopathic Pulmonary Fibrosis/genetics , COVID-19/pathology , COVID-19/virology , Databases, Genetic , Down-Regulation/drug effects , Down-Regulation/genetics , Humans , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Protein Interaction Maps/drug effects , Protein Interaction Maps/genetics , SARS-CoV-2/isolation & purification , Suloctidil/pharmacology , Suloctidil/therapeutic use , Up-Regulation/drug effects , Up-Regulation/genetics , Vasodilator Agents/pharmacology , Vasodilator Agents/therapeutic use
16.
Crit Care ; 26(1): 1, 2022 01 03.
Article in English | MEDLINE | ID: covidwho-1607666

ABSTRACT

BACKGROUND: SARS-CoV-2 seems to affect the regulation of pulmonary perfusion. Hypoperfusion in areas of well-aerated lung parenchyma results in a ventilation-perfusion mismatch that can be characterized using subtraction computed tomography angiography (sCTA). This study aims to evaluate the efficacy of oral sildenafil in treating COVID-19 inpatients showing perfusion abnormalities in sCTA. METHODS: Triple-blinded, randomized, placebo-controlled trial was conducted in Chile in a tertiary-care hospital able to provide on-site sCTA scans and ventilatory support when needed between August 2020 and March 2021. In total, 82 eligible adults were admitted to the ED with RT-PCR-confirmed or highly probable SARS-COV-2 infection and sCTA performed within 24 h of admission showing perfusion abnormalities in areas of well-aerated lung parenchyma; 42 were excluded and 40 participants were enrolled and randomized (1:1 ratio) once hospitalized. The active intervention group received sildenafil (25 mg orally three times a day for seven days), and the control group received identical placebo capsules in the same way. Primary outcomes were differences in oxygenation parameters measured daily during follow-up (PaO2/FiO2 ratio and A-a gradient). Secondary outcomes included admission to the ICU, requirement of non-invasive ventilation, invasive mechanical ventilation (IMV), and mortality rates. Analysis was performed on an intention-to-treat basis. RESULTS: Totally, 40 participants were enrolled (20 in the placebo group and 20 in the sildenafil group); 33 [82.5%] were male; and median age was 57 [IQR 41-68] years. No significant differences in mean PaO2/FiO2 ratios and A-a gradients were found between groups (repeated-measures ANOVA p = 0.67 and p = 0.69). IMV was required in 4 patients who received placebo and none in the sildenafil arm (logrank p = 0.04). Patients in the sildenafil arm showed a significantly shorter median length of hospital stay than the placebo group (9 IQR 7-12 days vs. 12 IQR 9-21 days, p = 0.04). CONCLUSIONS: No statistically significant differences were found in the oxygenation parameters. Sildenafil treatment could have a potential therapeutic role regarding the need for IMV in COVID-19 patients with specific perfusion patterns in sCTA. A large-scale study is needed to confirm these results. TRIAL REGISTRATION: Sildenafil for treating patients with COVID-19 and perfusion mismatch: a pilot randomized trial, NCT04489446, Registered 28 July 2020, https://clinicaltrials.gov/ct2/show/NCT04489446 .


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Sildenafil Citrate , Vasodilator Agents , Administration, Oral , Adult , Aged , COVID-19/physiopathology , Female , Humans , Male , Middle Aged , Pilot Projects , Sildenafil Citrate/administration & dosage , Treatment Outcome , Vasodilator Agents/administration & dosage , Ventilation-Perfusion Ratio
18.
J Med Internet Res ; 23(10): e25163, 2021 10 08.
Article in English | MEDLINE | ID: covidwho-1496813

ABSTRACT

BACKGROUND: Pulmonary arterial hypertension restricts the ability of patients to perform routine physical activities. As part of pulmonary arterial hypertension treatment, inhaled iloprost can be administered via a nebulizer that tracks inhalation behavior. Pulmonary arterial hypertension treatment is guided by intermittent clinical measurements, such as 6-minute walk distance, assessed during regular physician visits. Continuous digital monitoring of physical activity may facilitate more complete assessment of the impact of pulmonary arterial hypertension on daily life. Physical activity tracking with a wearable has not yet been assessed with simultaneous tracking of pulmonary arterial hypertension medication intake. OBJECTIVE: We aimed to digitally track the physical parameters of patients with pulmonary arterial hypertension who were starting treatment with iloprost using a Breelib nebulizer. The primary objective was to investigate correlations between changes in digital physical activity measures and changes in traditional clinical measures and health-related quality of life over 3 months. Secondary objectives were to evaluate inhalation behavior, adverse events, and changes in heart rate and sleep quality. METHODS: We conducted a prospective, multicenter observational study of adults with pulmonary arterial hypertension in World Health Organization functional class III who were adding inhaled iloprost to existing pulmonary arterial hypertension therapy. Daily distance walked, step count, number of standing-up events, heart rate, and 6-minute walk distance were digitally captured using smartwatch (Apple Watch Series 2) and smartphone (iPhone 6S) apps during a 3-month observation period (which began when iloprost treatment began). Before and at the end of the observation period (within 2 weeks), we also evaluated 6-minute walk distance, Borg dyspnea, functional class, B-type natriuretic peptide (or N-terminal pro-B-type natriuretic peptide) levels, health-related quality of life (EQ-5D questionnaire), and sleep quality (Pittsburgh Sleep Quality Index). RESULTS: Of 31 patients, 18 were included in the full analysis (observation period: median 91.5 days, IQR 88.0 to 92.0). Changes from baseline in traditional and digital 6-minute walk distance were moderately correlated (r=0.57). Physical activity (daily distance walked: median 0.4 km, IQR -0.2 to 1.9; daily step count: median 591, IQR -509 to 2413) and clinical measures (traditional 6-minute walk distance: median 26 m, IQR 0 to 40) changed concordantly from baseline to the end of the observation period. Health-related quality of life showed little change. Total sleep score and resting heart rate slightly decreased. Distance walked and step count showed short-term increases after each iloprost inhalation. No new safety signals were identified (safety analysis set: n=30). CONCLUSIONS: Our results suggest that despite challenges, parallel monitoring of physical activity, heart rate, and iloprost inhalation is feasible in patients with pulmonary arterial hypertension and may complement traditional measures in guiding treatment; however, the sample size of this study limits generalizability. TRIAL REGISTRATION: ClinicalTrials.gov NCT03293407; https://clinicaltrials.gov/ct2/show/NCT03293407. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/12144.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Administration, Inhalation , Adult , Heart Rate , Humans , Hypertension, Pulmonary/drug therapy , Iloprost/therapeutic use , Prospective Studies , Quality of Life , Treatment Outcome , Vasodilator Agents/therapeutic use , Walking
19.
Heart Vessels ; 35(10): 1349-1359, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-1451965

ABSTRACT

Fractional flow reserve (FFR) assessed during adenosine-induced maximal hyperemia has emerged as a useful tool for the guidance of percutaneous coronary interventions (PCI). However, interindividual variability in the response to adenosine has been claimed as a major limitation to the use of adenosine for the measurement of FFR, carrying the risk of underestimating the severity of coronary stenoses, with potential negative prognostic consequences. Genetic variants of the adenosine receptor A2a (ADORA2A gene), located in the coronary circulation, have been involved in the modulation of the hyperemic response to adenosine. However, no study has so far evaluated the impact of the single nucleotide polymorphism rs5751876 of ADORA2A on the measurement of FFR in patients undergoing percutaneous coronary intervention that was, therefore, the aim of our study. We included patients undergoing coronary angiography and FFR assessment for intermediate (40-70%) coronary lesions. FFR measurement was performed by pressure-recording guidewire (Prime Wire, Volcano), after induction of hyperemia with intracoronary boli of adenosine (from 60 to 1440 µg, with dose doubling at each step). Restriction fragment length polymorphism (RFLP) analysis was performed to assess the presence of rs5751876 C>T polymorphism of ADORA2a receptor. We included 204 patients undergoing FFR measurement of 231 coronary lesions. A total of 134 patients carried the polymorphism (T allele), of whom 41 (30.6%) in homozygosis (T/T).Main clinical and angiographic features did not differ according to ADORA2A genotype. The rs5751876 C>T polymorphism did not affect mean FFR values (p = 0.91), the percentage of positive FFR (p = 0.54) and the duration of maximal hyperemia. However, the time to recovery to baseline FFR values was more prolonged among the T-allele carriers as compared to wild-type patients (p = 0.04). Based on these results, in patients with intermediate coronary stenoses undergoing FFR assessment with adenosine, the polymorphism rs5751876 of ADORA2A does not affect the peak hyperemic response to adenosine and the results of FFR. However, a more prolonged effect of adenosine was observed in T-carriers.


Subject(s)
Coronary Artery Disease/genetics , Coronary Stenosis/genetics , Fractional Flow Reserve, Myocardial/genetics , Polymorphism, Single Nucleotide , Receptor, Adenosine A2A/genetics , Adenosine/administration & dosage , Aged , Cardiac Catheterization , Coronary Angiography , Coronary Artery Disease/diagnosis , Coronary Artery Disease/physiopathology , Coronary Artery Disease/therapy , Coronary Stenosis/diagnosis , Coronary Stenosis/physiopathology , Coronary Stenosis/therapy , Female , Humans , Hyperemia/physiopathology , Male , Middle Aged , Percutaneous Coronary Intervention , Phenotype , Predictive Value of Tests , Severity of Illness Index , Vasodilator Agents/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL